NAME	
DATE	
CLASS	

Use Synthetic Division

Synthetic division	a procedure to divide a polynomial by a binomial using coefficients of the dividend and the value of r in the divisor $x-r$
--------------------	---

Use synthetic division to find $(2x^3 - 5x^2 + 5x - 2) \div (x - 1)$.

Step 1	Write the terms of the dividend so that the degrees of the terms are in descending order. Then write just the coefficients.	$\begin{vmatrix} 2x^3 - 5x^2 + 5x - 2 \\ 2 - 5 & 5 - 2 \end{vmatrix}$
Step 2	Write the constant r of the divisor $x - r$ to the left, in this case, $r = 1$. Bring down the first coefficient, 2 , as shown.	1 2 -5 5 -2
Step 3	Multiply the first coefficient by r , $1 \cdot 2 = 2$. Write their product under the second coefficient. Then add the product and the second coefficient: $-5 + 2 = -3$.	1 2 -5 5 -2 2 2 -3
Step 4	Multiply the sum, -3 , by $r: -3 \cdot 1 = -3$. Write the product under the next coefficient and add: $5 + (-3) = 2$.	1 2 -5 5 -2 2 -3 2 -3 2
Step 5	Multiply the sum, 2, by $r: 2 \cdot 1 = 2$. Write the product under the next coefficient and add: $-2 + 2 = 0$. The remainder is 0.	1 2 -5 5 -2 2 -3 2 2 -3 2 0

Thus, $(2x^3 - 5x^2 + 5x - 2) \div (x - 1) = 2x^2 - 3x + 2$.

<u>ि श्वास्त्रक्त</u>

Simplify.

1.
$$(3x^3 - 7x^2 + 9x - 14) \div (x - 2)$$

2.
$$(5x^3 + 7x^2 - x - 3) \div (x + 1)$$

3.
$$(2x^3 + 3x^2 - 10x - 3) \div (x + 3)$$

4.
$$(x^3 - 8x^2 + 19x - 9) \div (x - 4)$$

5.
$$(2x^3 + 10x^2 + 9x + 38) \div (x + 5)$$

6.
$$(3x^3 - 8x^2 + 16x - 1) \div (x - 1)$$

7.
$$(x^3 - 9x^2 + 17x - 1) \div (x - 2)$$

8.
$$(4x^3 - 25x^2 + 4x + 20) \div (x - 6)$$

9.
$$(6x^3 + 28x^2 - 7x + 9) \div (x + 5)$$

10.
$$(x^4 - 4x^3 + x^2 + 7x - 2) \div (x - 2)$$

11.
$$(12x^4 + 20x^3 - 24x^2 + 20x + 35) \div (3x + 5)$$